Friend Grouping Algorithms for Online Social Networks: Preference, Bias, and Implications
نویسندگان
چکیده
Managing friendship relationships in social media is challenging due to the growing number of people in online social networks (OSNs). To deal with this challenge, OSNs’ users may rely on manually grouping friends with personally meaningful labels. However, manual grouping can become burdensome when users have to create multiple groups for various purposes such as privacy control, selective sharing, and filtering of content. More recently, recommendation-based grouping tools such as Facebook smart lists have been proposed to address this concern. In these tools, users must verify every single friend suggestion. This can hinder users’ adoption when creating large content sharing groups. In this paper, we proposed an automated friend grouping tool that applies three clustering algorithms on a Facebook friendship network to create groups of friends. Our goal was to uncover which algorithms were better suited for social network groupings and how these algorithms could be integrated into a grouping interface. In a series of semi-structured interviews, we asked people to evaluate and modify the groupings created by each algorithm in our interface. We observed an overwhelming consensus among the participants in preferring this automated grouping approach to existing recommendation-based techniques such as Facebook smart lists. We also discovered that the automation created a significant bias in the final modified groups. Finally, we found that existing group scoring metrics do not translate well to OSN groupings–new metrics are needed. Based on these findings, we conclude with several design recommendations to improve automated friend grouping approaches in OSNs.
منابع مشابه
Analysis and Evaluation of Privacy Protection Behavior and Information Disclosure Concerns in Online Social Networks
Online Social Networks (OSN) becomes the largest infrastructure for social interactions like: making relationship, sharing personal experiences and service delivery. Nowadays social networks have been widely welcomed by people. Most of the researches about managing privacy protection within social networks sites (SNS), observes users as owner of their information. However, individuals cannot co...
متن کاملMining Overlapping Communities in Real-world Networks Based on Extended Modularity Gain
Detecting communities plays a vital role in studying group level patterns of a social network and it can be helpful in developing several recommendation systems such as movie recommendation, book recommendation, friend recommendation and so on. Most of the community detection algorithms can detect disjoint communities only, but in the real time scenario, a node can be a member of more than one ...
متن کاملLinking Social Networks on the Web with FOAF
One of the core goals of the Semantic Web is to store data in distributed locations, and use ontologies and reasoning to aggregate it. Social networking is a large movement on the web, and social networking data using the Friend of a Friend (FOAF) vocabulary makes up a significant portion of all data on the Semantic Web. Many traditional webbased social networks share their members’ information...
متن کاملRelationship between the Online Social Networks Addiction and Psychological Disorders
Background: The Online social networks addiction like others type of addiction can lead to ethical dilemmas, as well as it can be affected from psychological disorders. So, the aim of this research is to analyze the effect of depression, anxiety and usage time of online social networks on the level of online social networks addiction and on the life satisfaction. Method: The method of research ...
متن کاملCrawling and Detecting Community Structure in Online Social Networks Using Local Information
As Online Social Networks (OSNs) become an intensive subject of research for example in computer science, networking, social sciences etc., a growing need for valid and useful datasets is present. The time taken to crawl the network is however introducing a bias which should be minimized. Usual ways of addressing this problem are sampling based on the nodes (users) ids in the network or crawlin...
متن کامل